Date __

B. The following is a *cooling curve* showing the *release* of heat at a constant rate of 500.0 joules/minute from a 3.00 gram sample of water vapor at 140.0°C. The final temperature of the ice is -20.0°C.

During which segments is kinetic energy decreasing?
During which segments does kinetic energy remain the same?
During which segments is potential energy decreasing?
During which segments does potential energy remain the same?
During which segments is one phase only present?
During which segments are two phases present?
At what time does the liquid phase first appear?
At what time does the solid phase first appear?
At what time do the particles have the highest average kinetic energy?
Phase changes that occur with a release of energy are
and are exothermic phase changes.
During which segment could the heat of solidification be determined?
During which segment could the heat of condensation be determined?
How long does it take to completely freeze the sample at its freezing point?
How long does it take to completely condense the sample at its condensation point?
During which segment is the substance entirely in the solid state?
During which segment is the substance entirely in the liquid state?
During which segment is the substance entirely in the gas state?
During which segment is there an equilibrium between the solid and liquid states?
The temperature of the sample at this point is Kelvin.
During which segment is there an equilibrium between the liquid and gas states?
The temperature of the sample at this point is Kelvin.

Date

C. The following is a heating curve for substance X. 15.00 grams of substance X are heated at a constant rate of 500.0 joules/min.

For answers that require calculations, express using the correct number of significant figures and include units.

- 1. The melting point is _____. The boiling point is _____.
- 2. The time at which the liquid phase first appears is _____ minutes. The time at which the gas phase first appears is ______ minutes.
- 3. The sample is completely in the liquid phase between _____ and _____ minutes.
- 4. Determine the heat of fusion of this substance.
- 5. Determine the heat of vaporization of this substance.
- 6. Determine the specific heat of substance X (in the liquid state).
- 7. Compare the intermolecular forces present in substance X to those present in a sample of water. *Explain completely*.